RSS

Category Archives: DNA

Bad Luck X2: First Your Head Gets Lopped Off, Second You End Up In A Wall

The guillotine was an integral part of the French Revolution and the Reign of Terror that followed. Ask Louis XVI and Marie Antoinette. But at least their bodies, and their heads, ended up in a cemetery. It seems that several hundreds of others weren’t that lucky. They simply got plastered into a wall. That’s what a recent discovery at the Chapelle Expiatoire suggests.

https://www.newser.com/story/292873/in-walls-of-chapel-a-chilling-find-on-french-revolution.html

https://www.theguardian.com/world/2020/jun/28/french-revolution-remains-discovered-in-walls-of-paris-monument

I’ve blogged about the guillotine before. It was a brutal but fascinating piece of equipment with a history that is more than a little bloody. It also indirectly left a future king in prison and his heart on the lam. 

Guillotine and Death: How Long Does It Take?: https://writersforensicsblog.wordpress.com/2009/09/07/guillotine-and-death-how-long-does-it-take/

Mitochondrial DNA and the Heart of a Future King: https://writersforensicsblog.wordpress.com/2009/08/05/mitochondrial-dna-and-the-heart-of-a-future-king/

 

Criminal Mischief: Episode #35: Corpse ID

Criminal Mischief: Episode #35: Corpse ID

 

 

Most corpses that are the victims of foul play are easily identified because they’re found in familiar places and reported by folks who knew them. But those found in remote or odd places with no ID create problems for investigators. In these cases, identifying the corpse is a critical step in solving the case.

LISTEN: https://soundcloud.com/authorsontheair/episode-35-corpse-id

PAST SHOWS: http://www.dplylemd.com/criminal-mischief.html

SHOW NOTES: http://www.dplylemd.com/criminal-mischief-notes/35-corpse-id.html

Crime Museum: Postmortem Identification: https://www.crimemuseum.org/crime-library/forensic-investigation/postmortem-identification/

The Conversation: How Do We Identify Human Remains?: http://theconversation.com/how-do-we-identify-human-remains-121315

NamUs: https://www.namus.gov

Crime and Science Radio Interview with Todd Matthews of NamUs: http://www.dplylemd.com/csr-past-details/todd-matthews.html

 

FORENSICS FOR DUMMIES: http://www.dplylemd.com/book-details/forensics-for-dummies.html

 

HOWDUNNIT:FORENSICS: http://www.dplylemd.com/book-details/howdunnit-forensics.html

 

Your Hair and Your ID

 

We’ve known for years that DNA can be obtained from hair and this can be used for identification. If part of the follicle, or bulb, is present, then nuclear DNA can be retrieved and a complete DNA profile can be created. If only the hair shaft is available, then mitochondrial DNA is available and this can help narrow the identity of an individual by showing that the person belongs to a specific maternal line. Not nearly as good as nuclear DNA but this does focus the suspect field to a single maternal line.

But what if the hair shaft could be even more discriminatory? What if it could ID a specific individual and not just someone in the maternal line? Most hair found at crime scenes has been shed naturally and therefore has no follicular material, which might be present if the hair had been yanked free. This means that typically only mitochondrial DNA is available to the crime lab. 

But new studies have found an ultra-sensitive method for determining proteins within the hair shaft itself and it turns out that the types and amounts of the proteins present might be highly specific from individual to individual. This technique obviously is not ready for prime time yet, but it’s something to keep an eye on.

Science Article: https://www.sciencemag.org/news/2019/11/scientists-can-now-identify-someone-single-strand-hair

 

Criminal Mischief: Episode #25: A Stroll Through Forensic Science History

 

Criminal Mischief: Episode #25: A Stroll Through Forensic Science History

 

 

LISTEN:https://soundcloud.com/authorsontheair/forensicsciencehistory

PAST SHOWS: http://www.dplylemd.com/criminal-mischief.html

SHOW NOTES: http://www.dplylemd.com/criminal-mischief-notes/25-a-stroll-through-forensi.html

 

FORENSIC SCIENCE TIMELINE 

Prehistory: Early cave artists and pot makers “sign” their works with a paint or impressed finger or thumbprint.

1000 b.c.: Chinese use fingerprints to “sign” legal documents.

3rd century BC.: Erasistratus (c. 304–250 b.c.) and Herophilus (c. 335–280 b.c.) perform the first autopsies in Alexandria.

2nd century AD.: Galen (131–200 a.d.), physician to Roman gladiators, dissects both animal and humans to search for the causes of disease.

c. 1000: Roman attorney Quintilian shows that a bloody handprint was intended to frame a blind man for his mother’s murder.

1194: King Richard Plantagenet (1157–1199) officially creates the position of coroner.

1200s: First forensic autopsies are done at the University of Bologna.

1247: Sung Tz’u publishes Hsi Yuan Lu (The Washing Away of Wrongs), the first forensic text.

c. 1348–1350: Pope Clement VI(1291–1352) orders autopsies on victims of the Black Death to hopefully find a cause for the plague.

Late 1400s: Medical schools are established in Padua and Bologna.

1500s: Ambroise Paré (1510–1590) writes extensively on the anatomy of war and homicidal wounds.

1642: University of Leipzig offers the first courses in forensic medicine.

1683: Antony van Leeuwenhoek (1632–1723) employs a microscope to first see living bacteria, which he calls animalcules.

Late 1600s: Giovanni Morgagni (1682–1771) first correlates autopsy findings to various diseases.

1685: Marcello Malpighi first recognizes fingerprint patterns and uses the terms loops and whorls.

1775: Paul Revere recognizes dentures he had made for his friend Dr. Joseph Warren and thus identifies the doctor’s body in a mass grave at Bunker Hill.

1775: Carl Wilhelm Scheele (1742–1786) develops the first test for arsenic.

1784: In what is perhaps the first ballistic comparison, John Toms is convicted of murder based on the match of paper wadding removed from the victim’s wound with paper found in Tom’s pocket.

1787: Johann Metzger develops a method for isolating arsenic.

c. 1800: Franz Joseph Gall (1758–1828) develops the field of phrenology.

1806: Valentine Rose recovers arsenic from a human body.

1813: Mathieu Joseph Bonaventure Orfila (1787–1853) publishes Traité des poisons (Treatise on Poison), the first toxicology textbook. 

1821: Sevillas isolates arsenic from human stomach contents and urine, giving birth to the field of forensic toxicology.

1823: Johannes Purkinje (1787–1869) devises the first crude fingerprint classification system.

1835: Henry Goddard (1866–1957) matches two bullets to show they came from the same bullet mould.

1836: Alfred Swaine Taylor (1806–1880) develops first test for arsenic in human tissue.

1836: James Marsh (1794–1846) develops a sensitive test for arsenic (Marsh test).

1853: Ludwig Teichmann (1823–1895) develops the hematin test to test blood for the presence of the characteristic rhomboid crystals.

1858: In Bengal, India, Sir William Herschel (1833–1917) requires natives sign contracts with a hand imprint and shows that fingerprints did not change over a fifty-year period.

1862: Izaak van Deen (1804–1869) develops the guaiac test for blood.

1863: Christian Friedrich Schönbein (1799–1868) develops the hydrogen peroxide test for blood.

1868: Friedrich Miescher (1844–1895) discovers DNA.

1875: Wilhelm Konrad Röntgen (1845–1923) discovers X-rays.

1876: Cesare Lombroso (1835–1909) publishes The Criminal Man, which states that criminals can be identified and classified by their physical characteristics.

1877: Medical examiner system is established in Massachusetts.

1880: Henry Faulds (1843–1930) shows that powder dusting will expose latent fingerprints.

1882: Alphonse Bertillon (1853–1914) develops his anthropometric identification system.

1883: Mark Twain (1835–1910) employs fingerprint identification in his books Life on the Mississippi and The Tragedy of Pudd’nhead Wilson (1893– 1894).

1887: In Sir Arthur Conan Doyle’s first Sherlock Holmes novel, A Study in Scarlet, Holmes develops a chemical to determine whether a stain was blood or not—something that had not yet been done in a real-life investigation.

1889: Alexandre Lacassagne (1843–1924) shows that marks on bullets could be matched to those within a rifled gun barrel.

1892: Sir Francis Galton (1822–1911) publishes his classic textbook Finger Prints. 

1892: In Argentina, Juan Vucetich (1858–1925) devises a usable fingerprint classification system. 

1892: In Argentina, Francisca Rojas becomes the first person charged with a crime on fingerprint evidence.

1898: Paul Jeserich (1854–1927) uses a microscope for ballistic comparison. 

1899: Sir Edward Richard Henry (1850–1931) devises a fingerprint classification system that is the basis for those used in Britain and America today.

1901: Karl Landsteiner (1868–1943) delineates the ABO blood typing system. 

1901: Paul Uhlenhuth (1870–1957) devises a method to distinguish between human and animal blood. 

1901: Sir Edward Richard Henry becomes head of Scotland Yard and adopts a fingerprint identification system in place of anthropometry. 

1902: Harry Jackson becomes the first person in England to be convicted by fingerprint evidence. 

1903: Will and William West Case–effectively ended the Bertillion System in favor of fingerprints for identification

1910: Edmund Locard (1877–1966) opens the first forensic laboratory in Lyon, France. 

1910: Thomas Jennings becomes the first U.S. citizen convicted of a crime by use of fingerprints.

1915: Leone Lattes (1887–1954) develops a method for ABO typing dried bloodstains.

1920: The Sacco and Vanzetti case brings ballistics to the public’s attention. The case highlights the value of the newly developed comparison microscope.

1923: Los Angeles Police Chief August Vollmer (1876–1955) establishes the first forensic laboratory. 

1929: The ballistic analyses used to solve the famous St. Valentine’s Day Massacre in Chicago lead to the establishment of the Scientific Crime Detection Laboratory (SCDL), the first independent crime lab, at Northwestern University.

1932: FBI’s forensic laboratory is established.

1953: James Watson (1928– ), Francis Crick (1916–2004), and Maurice Wilkins (1916–2004) identify DNA’s double-helical structure. 

1954: Indiana State Police Captain R.F. Borkenstein develops the breathalyzer. 

1971: William Bass establishes the Body Farm at the University of Tennessee in Knoxville.

1974: Detection of gunshot residue by SEM/EDS is developed. 

1977: FBI institutes the Automated Fingerprint Identification System (AFIS). 

1984: Sir Alec Jeffreys (1950– ) develops the DNA “fingerprint” technique.

1987: In England, Colin Pitchfork becomes the first criminal identified by the use of DNA.

1987: First United States use of DNA for a conviction in the Florida case of Tommy Lee Andrews.

1990: The Combined DNA Index System (CODIS) is established.

1992: The polymerase chain reaction (PCR) technique is introduced.

1994: The DNA analysis of short tandem repeats (STRs) is introduced. 

1996: Mitochondrial DNA is first admitted into a U.S. court in Tennessee v. Ware. 

1998: The National DNA Index System (NDIS) becomes operational.

Since then:

Touch DNA

Familial DNA

Phenotypic DNA

 

Talking About Forensic Science on the For Dummies Podcast Series

 

Had I a great time chatting with Eric Martsolf on the For Dummies podcast series about FORENSICS FOR DUMMIES and Forensic Science. Drop by and take a listen:

http://fordummiesthepodcast.twa.libsynpro.com/for-dummies-the-podcast-forensics

More Info and to order FORENSICS FRO DUMMIES:
http://www.dplylemd.com/book-details/forensics-for-dummies.html

 

 

 

 

DNA Comparisons in 12 Seconds?

 

Though there are DNA techniques such as Familial and Phenotypical analyses that can narrow the search for a suspect, in the end, DNA is most useful if it can be profiled and matched against another sample. Databases play a large role in such comparisons when an unknown crime scene sample is obtained. Even if no suspect is on the radar, a “hit” on a database comparison can lead investigators down the right path. But these take time. And if a killer is “out there,” time is often critical. What if investigators could obtain a sample at the scene and compare it against 20 million databases sample in only a few seconds? That would be amazing. But guess what? With the FastID algorithm, it seems to be possible.

Could be a game changer for law enforcement.

PHYS.ORG Article: https://phys.org/news/2019-06-record-breaking-dna-comparisons-fast-forensics.html

 

Criminal Mischief: The Art and Science of Crime Fiction: Episode #17: DNA and Twins

DNA Replication

 

LISTEN: https://soundcloud.com/authorsontheair/criminal-mischief-episode-17-dna-and-identical-twins

PAST SHOWS: http://www.dplylemd.com/criminal-mischief.html

SHOW NOTES:

For years it was felt that the DNA of identical twins was indeed identical. Since they come from a single fertilized egg, this would seem intuitive. But, nature likes to throw curve balls—and the occasional slider. After that first division of the fertilized, and after the two daughter cells go their way toward producing identical humans, things change. And therein lies the genetic differences between two “identical” twins.

LINKS:

One Twin Committed the Crime—but Which One?: https://www.nytimes.com/2019/03/01/science/twins-dna-crime-paternity.html

The Claim: Identical Twins Have Identical DNA: https://www.nytimes.com/2008/03/11/health/11real.html

The Genetic Relationship Between Identical Twins: https://www.verywellfamily.com/identical-twins-and-dna-2447117

Identical Twins’ Genes Are Not Identical: https://www.scientificamerican.com/article/identical-twins-genes-are-not-identical/

Rare Australian Twins Are “Semi-Identical,: Sharing 89 Percent of Their DNA: https://www.inverse.com/article/53633-semi-identical-twins-share-78-percent-of-dna

 

Criminal Mischief: Episode #07: Famous and Odd DNA Cases

 

Criminal Mischief: Episode #07: Famous and Odd DNA Cases

LISTEN: https://soundcloud.com/authorsontheair/criminal-mischief-episode-07-famous-odd-dna-cases

PAST SHOWS: http://www.dplylemd.com/criminal-mischief.html

 

FAMOUS AND ODD DNA CASES NOTES:

 

Colin Pitchfork: The Beginning

http://aboutforensics.co.uk/colin-pitchfork/

Timothy Wilson Spencer, The Southside Strangler” First US DNA Conviction

(David Vasquez—first to be exonerated by DNA)

https://en.wikipedia.org/wiki/Timothy_Wilson_Spencer

http://www.digitaljournal.com/article/352011

Brown’s Chicken Murders:

https://en.wikipedia.org/wiki/Brown%27s_Chicken_massacre

https://chicago.cbslocal.com/2018/01/08/browns-chicken-massacre-25-years-anniversary/

Lonnie Franklin, The Grim Sleeper: Familial DNA

https://en.wikipedia.org/wiki/Grim_Sleeper

https://www.rollingstone.com/culture/culture-features/grim-sleeper-serial-killer-everything-you-need-to-know-252246/

James Lynn Brown: Familial DNA

https://www.ocregister.com/2012/12/04/family-members-dna-solves-1978-killing/

Gary Ridgway, The Green River Killer

https://en.wikipedia.org/wiki/Gary_Ridgway

Pierre G: Kiss DNA Foils Jewel Thief

https://www.telegraph.co.uk/news/worldnews/europe/france/10616806/French-jewellery-thiefs-fate-sealed-with-a-kiss-after-conviction-from-DNA-on-victim.html

David Stoddard: Dog Bite DNA Case

https://www.news5cleveland.com/news/local-news/akron-canton-news/dna-from-dogs-mouth-solves-barberton-home-invasion-suspect-david-stoddard-also-charged-with-murder

Maggot DNA Case:

https://www.ncbi.nlm.nih.gov/pubmed/22971153

Willow Martin Arson Case and Potato DNA:

http://www.courant.com/breaking-news/hc-strippers-arson-drugs-0713-20160712-story.html

https://www.mycitizensnews.com/news/2018/05/woman-sentenced-to-8-years-for-arson/

 

 
 

Criminal Mischief: Episode #06: Is It Harder To Write Crime Fiction Today?

AOTA Graphic

 

Criminal Mischief: Episode #06: Is It Harder To Write Crime Fiction Today?

LISTEN: https://soundcloud.com/authorsontheair/criminal-mischief-episode-06-is-it-harder-to-write-crime-fiction-today

Is It Harder To Write Crime Fiction Today? Notes:

Do modern forensic science and police investigative techniques make creating compelling crime fiction more difficult? Are there simply too many balls to keep in the air? Too much to consider? Or is now little different from then?

The Past, the present, and the future

Forensic Science timeline—-a fairly new discipline

Basic Science, then Medicine, finally forensic science

Personal ID

Visual
Bertillon
West Case
Facial recognition
Behavioral Profiling

Prints, ABO type, DNA, DNA Phenotype

Fingerprints—-then and now

Vucetich—the Rojas case
Stella Nickell Case
Touch DNA
Touch Toxicology

Toxicology

From arsenic to GC/MS

Blood Typing

ABO can exclude but not ID

DNA

Nuclear
Mitochondrial
Familial—Grim Sleeper case
Phenotypic Analysis

Electronics

Cell phones, computers, emails, texts, VMs

LINKS: 

Forensic Science Timeline: http://www.dplylemd.com/articles/forensic-science-timeline.html

History of Fingerprints: http://onin.com/fp/fphistory.html

Brief History of Poisons and Forensic Toxicology: https://www.okorieokorocha.com/poisons-and-forensic-toxicology/

History of Forensic Ballistics: https://ifflab.org/the-history-of-forensic-ballistics-ballistic-fingerprinting/

FORENSICS FOR DUMMIES: http://www.dplylemd.com/book-details/forensics-for-dummies.html

HOWDUNNIT:FORENSICS: http://www.dplylemd.com/book-details/howdunnit-forensics.html

Stella Nickell Wikipedia: https://en.wikipedia.org/wiki/Stella_Nickell

DNA Profiling: https://en.wikipedia.org/wiki/DNA_profiling

Mitochondrial DNA: http://www.dplylemd.com/articles/mitochondrial-dna.html

Familial DNA: http://www.dnaforensics.com/familialsearches.aspx

Grim Sleeper/Lonnie Franklin case: https://en.wikipedia.org/wiki/Grim_Sleeper

Is DNA Phenotyping Accurate: https://www.smithsonianmag.com/innovation/how-accurately-can-scientists-reconstruct-persons-face-from-dna-180968951/

DNA Phenotyping Examples: https://snapshot.parabon-nanolabs.com/examples

Bertillon and the West Brothers: http://www.nleomf.org/museum/news/newsletters/online-insider/november-2011/bertillon-system-criminal-identification.html

 

Does Your DNA Contain Your Image?

DNA-Based Sketches

 

To say that DNA had revolutionized criminal investigations would be a huge understatement. Prior to DNA profiling, identifying a suspect with absolute certainty was more difficult. Fingerprints would work, of course, and eyewitness accounts, though flawed in many ways, could also help. But a criminal leaving behind biological evidence such as blood, semen, saliva, hair, skin cells, and other little bits, offers a method of identity that is second to none. DNA profiling has been used to catch many a criminal. But, in order for it to do its work, there must be something for the DNA analyst to compare the crime scene sample against. The DNA database, CODIS, helps because it stores millions of DNA profiles and if the perpetrator is in the system, a match can be made. But if he is not, the database is of little help.

DNA analysis can reveal the gender of the person who left behind the sample quite easily. But our DNA controls more than that. It determines how tall we will be, what our hair and eye color will be, our intellectual level, our ability to play music, and many other things. Familial DNA has been used to narrow down unknown samples to a smaller group, such as an extended family. And lately, this is been used in conjunction with the various ancestral databases to solve some crimes. But a newer technique offers another tool on the DNA front. It’s called DNA Phenotyping.

The principle seems simple: Since our DNA determines what we look like, would it not be possible to take a DNA sample and then create an image of the individual it belonged to? Maybe. At least great strides have been made in that regard. A case in point is that of research biologist Le Bich-Thuy, who was raped, battered, and strangled 24 years ago. DNA obtained from that scene was subjected to DNA Phenotyping and an image of the individual who likely perpetrated the crime was generated. Not only that, the image was age altered so that it would more accurately reflect what he might look like now. Fascinating case.