RSS

Category Archives: Cause & Manner of Death

Q&A: Will a Decaying Corpse Actually Produce Alcohol?

whiskey glasses

 

Q: Is it possible or likely for blood alcohol levels to increase or decrease in a decomposing body, and if so during what stages of decomposition?

A: Alcohol is usually consumed in the decay process but may actually be produced and this might cloud any toxicological examinations on the corpse. Make it look as if the victim consumed more alcohol than he actually did.

I must point out that alcohol is not commonly produced but it does happen in rare cases. The alcohol is a byproduct of the action of some types of bacteria that are involved in the decay process. This means that alcohol can only appear during active decay. What is that time period? A little about putrefaction.

The decomposition of the human body involves two distinct processes: autolysis and putrefaction. Autolysis is basically a process of self-digestion. After death, the enzymes within the body’s cells begin the chemical breakdown of the cells and tissues. As with most chemical reactions the process is hastened by heat and slowed by cold. Putrefaction is the bacterially mediated destruction of the body’s tissues. It is this decay that might cause some alcohol formation. Not always, but sometimes. The responsible bacteria mostly come for the intestinal tract of the deceased, though environmental bacteria and yeasts contribute in many situations. Bacteria thrive in warm, moist environments and become sluggish in colder climes. Freezing will stop their activities completely. A frozen body will not undergo putrefaction until it thaws.

Under normal temperate conditions, putrefaction follows a known sequence. During the first 24 hours, the abdomen takes on a greenish discoloration, which spreads to the neck, shoulders, and head. Bloating follows. This is due to the accumulation of gas, a byproduct of the action of bacteria, within the body’s cavities and skin. This swelling begins in the face where the features swell and the eyes and tongue protrude. The skin will then begin to “marble.” This is a web-like pattern of the blood vessels over the face, chest, abdomen, and extremities. This pattern is green-black in color and is due to the reaction of the blood’s hemoglobin with hydrogen sulfide. As gasses continue to accumulate, the abdomen swells and the skin begins to blister. Soon, skin and hair slippage occur and the fingernails begin to slough off. By this stage, the body has taken on a greenish-black color. The fluids of decomposition (purge fluid) will begin to drain from nose and mouth. This may look like bleeding from trauma, but is due to extensive breakdown of the body’s tissues.

The rate at which this process occurs is almost never “normal” because conditions surrounding the body are almost never “normal.” Both environmental and internal body conditions alter this process greatly. Obesity, excess clothing, a hot and humid environment, and the presence of sepsis may speed this process so that 24 hours appear like 5 or 6 days have passed. Sepsis is particularly destructive to the body. Not only would the body temperature be higher at death, but also the septic process would have spread bacteria throughout the body. In this case, the decay process would begin quickly and in a widespread fashion. A septic body that is dead for only a few hours may appear as if it has been dead for several days.

As opposed to the above situations, a thin, unclothed corpse lying on a cold surface with a cool breeze would follow a much slower decomposition process. Very cold climes may slow the process so much that even after several months, the body appears as if it has been dead only a day or two. Freezing will protect the body from putrefaction if the body is frozen before the process begins. Once putrefaction sets in, even freezing the body may not prevent its eventual decay. If frozen quickly enough, the body may be preserved for years.

So, whether a particular corpse actually produces alcohol or not is totally unpredictable. How long it takes depends upon the conditions the corpse is exposed to. In a corpse in an enclosed garage in Houston in August, this process will be very rapid and the corpse will be severely decayed after 48 hours. If parked in a snow bank in Minnesota in February it might not even begin the decay process until April or May when the spring thaw occurs. And anything in between. The appearance of any alcohol would coincide with the time frame of the bacterial activity.

So how does the ME get around this possibility? How can he determine the actual alcohol level that was present prior to the decay process kicking in? He can’t with any absolute accuracy, but he does have a tool that will help him make a best guess. He can extract the vitreous humor from the victim’s eye—this is the jelly-like fluid that fills the eyeballs. The alcohol level within this fluid matches that of the blood with about a two-hour delay. That is, the level within the vitreous at any given time reflects the blood alcohol level that was present approximately two hours earlier. And the vitreous is slow to decay so it might be intact even though the corpse is severely decayed. By measuring the vitreous level the ME will know the blood alcohol level two hours prior to death and he can then estimate the blood alcohol level at the time of death.

 

MF&F 300X481

This question originally appeared in MORE FORENSICS AND FICTION

http://www.dplylemd.com/book-details/more-forensics-and-fiction.html

 

The Kiss of Death: Beware a PBJ Sandwich

Anaphylaxis can kill you. And do so very quickly and unexpectedly.

Our immune system protects us every minute of every day by attacking microscopic creatures that could do us harm. Things such as viruses, bacteria, and other invaders. When a foreign organism enters our body, the immune system recognizes it and immediately goes to work building antibodies against it. These antibodies attach to the foreign organism and attract various blood cells to it. Mostly the various types of White Blood Cells (WBCs) we all have. The cells then damage and devour the invader. That’s a good thing.

Abs-6

But sometimes this protective system goes haywire. It over-reacts. It creates substances that lead to an acute asthmatic attack, a diffuse rash, a swelling of the face and hands and feet and other body parts, and a dramatic, and often deadly, drop in blood pressure. We call such an overwhelming reaction  anaphylactic shock.

The treatment for anaphylaxis is the immediate injection of epinephrine, antihistamines, and steroids. These either block the allergic reaction itself or mitigate the body’s reaction to it. But time is critical. These measures must be taken very quickly. This is why many people who have serious allergies carry small epinephrine injectors such as EpiPen.

Someone who is allergic to things such as bee stings, peanuts, certain foods or plants, or some medications can suffer such a reaction even if exposed to very small quantities of the allergen. A little dab can set off a major reaction.

Case in point: Myriam Ducre-Lemay.

Myriam was allergic to peanuts. She avoided them like the plague. But one evening, her boyfriend kissed her after he had eaten peanut butter and this set off an anaphylactic reaction that took her life.

peanut-butter

Mayo Clinic Article: http://www.mayoclinic.org/diseases-conditions/anaphylaxis/basics/definition/con-20014324

Wikipedia Article: https://en.wikipedia.org/wiki/Anaphylaxis

 

Q&A: What Injuries Can Occur With a Car Bomb?

Q&A: What Injuries Can Occur With a Car Bomb?

Q: How far away would you have to be from a car bomb (the kind that is detonated by starting the car) to survive with injuries and what sorts of injuries might you sustain in the blast?

car bomb

 

A: This is a question that is virtually impossible to answer with any degree of accuracy. There are entirely too many variables involved. How big is the bomb? How big is the car? How close is close? What direction does the shrapnel fly and in which direction is the concussive force of the bomb directed? Are there any intervening walls or structures that might dampen the concussive force or block or redirect the shrapnel? Each of these variables, and many others, must be taken into account before any prediction of possible injuries can be entertained.

Lets look at a few general principles however. Big bombs cause big problems and little bombs cause less. A large bomb can produce a massive concussive force that will spread out for many yards in every direction. It can also produce shrapnel that can fly many hundreds of feet. A small bomb, needless to say, would release a smaller concussive force and any shrapnel would move at a slower rate and therefore do less damage.

Let’s assume that this is a moderate sized bomb and the victim is standing close enough to receive injuries from the explosion. There are several types of injuries that can occur with a bomb.

If the person is close enough and the bomb is of the type that produces a great deal of heat, then burns over the skin and face can occur and even the victim’s clothing might catch fire. This could produce severe injury to the flesh and the lungs.

The concussive force of the bomb is simply a wave of air molecules that are accelerated to very high speed. When the wave strikes an object or a person, damage and bodily trauma will result. This is why a bomb will destroy a building, knock down a wall, or kill a person within the concussive umbrella. If the force is strong enough it can burst eardrums, cause sinuses within the nose and face to bleed, rupture the lungs, rupture the abdomen and internal organs, and many other nasty injuries. If the person is slightly further away, or if the concussive force is dampened somewhat, then injuries to the eardrums and sinuses may occur but the other more severe injuries to the lungs and internal organs might not occur.

Shrapnel presents a very difficult and dangerous situation. With a car exploding all types of shrapnel can be fired in every direction. Chunks of metal and glass, complete doors or windows, beams of metal and even the engine can be launched in any direction. The types of injuries that someone would suffer depends upon exactly what strikes them, where they are struck, and with what speed and force they are hit. I think it would be obvious that if a car door or engine or some large piece of metal struck someone at very high velocity it would most likely kill them instantly and if not their injuries would be so severe that without very aggressive medical treatment and luck they would die from these in short order. But what about smaller pieces of glass and metal? These can penetrate the head, the chest, or the abdomen and damage vital organs and lead to death very quickly. Or they can enter the same areas and lead to massive injury and bleeding, which can then lead to death in minutes to an hour or so. Or they could simply be flesh wounds and the person could survive but would likely require surgical repair of the wounds and treatment with antibiotics to prevent secondary infections.

You can see almost anything can happen in this explosive situation.  A large explosion at a great distance could easily do the same damage as a smaller one where the person was standing close by. Any bomb where the concussive force and shrapnel were directed away from the person might produce no injuries while if the victim were standing in the path of the concussive wave and the shrapnel he could be killed instantly. And anywhere in between. This great degree of variation in what actually happens is good for storytelling since it means that you can craft your story almost any way you want.

 

Diatoms: Microscopic Clues of Death By Drowning?

Light micrograph of radial and pennate diatoms under darkfield illumination

DIATOMS

What are diatoms? How do they help the Medical Examiner determine that a death was from drowning?

Determining that someone has drowned is not as easy as it might seem. The finding of water in the lungs isn’t enough. Sure drowning victims most often have water-filled lungs but if a corpse is tossed into a body of water, the lungs will often passively fill as the water replaces the trapped air in the airways and lung tissue. However, if the ME finds inhaled debris such as plant and water-born insects, etc. deep in the lungs, this suggests that the victim was breathing at the time they entered the water and inhaled the debris-filled water. But this isn’t always found.

So a method for determining drowning is needed. Diatoms might help. Though controversial and definitely not universally accepted as a sign of drowning, this search for diatoms is an interesting forensic science technique. And this search is not in the lungs, but rather in the bone marrow.

From HOWDUNNIT: FORENSICS:

The ME might also find clues to indicate that the victim was conscious before drowning by examination of the bone marrow. This might sound odd at first, but the key is in finding tiny creatures called diatoms within the marrow.

Diatoms are tiny single-celled organisms that scurry around in both salt and fresh water. They have silica in their cell walls and are very resistant to degradation. If the victim’s heart is still beating when he enters the water, any diatoms in the inhaled water will pass through the lungs, enter the bloodstream, and be pumped throughout the body, where they tend to collect in the bone marrow.

If a microscopic analysis of the marrow reveals diatoms, the victim must have been alive at the time of water entry. This technique may be useful in severely degraded or skeletal remains where no lungs or sinus tissues are available for examination. Unfortunately, diatom testing is not exactly that straightforward and is controversial. Some experts feel that diatoms are an inexact tool for determining if a drowning occurred. Some bodies of water contain no diatoms.

Also, they are found in air and soil and even on the clothing of the examiner. This makes contamination of the tested sample a possibility.

 

Howdunnit Forensics Cover

 

FORENSICS FOR DUMMIES Release Day

FFD 300X378

 

Forensics For Dummies Updated 2nd Edition is now available.

Get it through your local Indie Bookstore or here:

Amazon: http://www.amazon.com/Forensics-Dummies-Douglas-P-Lyle/dp/1119181658

B&N: http://www.barnesandnoble.com/w/forensics-for-dummies-douglas-p-lyle/1013991421

 

Q and A: Can My Villain Cook Attempt a Murder Using Contaminated Food?

Q: My villain is a cook and he wants to kill the hero by feeding him tainted food. I want to avoid using a detectable poison, so I thought a deliberately introduced food-borne pathogen, such as ptomaine, botulism, E.coli, or salmonella, or something like those, would do it. But how do I get the bacteria/germs/whatever in the food? What will it do to him? How long would it take him to die, and what steps could the hero take to make sure he survives? What could the villain do to make sure the hero dies?

 

E. Coli

E. Coli Growing on a Culture Plate

 

A: This scenario will work but there are a few problems with it. First of all, using bacteria for murder is extremely unpredictable and most killers prefer a more predictable method. Just because your villain feeds contaminated food to the victim it does not mean that he will die because contaminated food rarely kills people but rather merely makes them sick. Typically people survive these types of illness—but not always. The best way to assure, or at least increase the probability, that your victim would die is to prevent him from reaching medical care.

Infectious processes most often kill by two mechanisms. The first is that they alter the function of the infected organ. For example, pneumonia can kill by infecting the lungs and filling the air spaces with bacteria and liquids we call exudates. This is simply the body’s reaction to the infection. Like a weeping wound or one that forms pus. This is what happens in the lungs and if so it interferes with the exchange of oxygen and the victim can die because the lungs fail. An infection in the kidneys can do the same thing by causing kidney failure and infection in the gastrointestinal tract, which is what would most frequently happen with ingested bacteria, can lead to severe diarrhea and dehydration or in some cases or severe bleeding and death can follow from shock.

But the most treacherous thing associated with any of these infections is the passage of the bacteria from the infected organ into the bloodstream. We call this sepsis or septicemia, big words that mean infection in the blood stream. When this happens the infection spreads rapidly throughout the body and very quickly the victim can suffer from septic shock–low blood pressure and shock from bacteria in the blood stream. This can lead to death in short order.

So regardless of which bacterium you decide to use, it would need to be added to the food and the victim ingest it. This would make him ill with gastrointestinal symptoms such as nausea, vomiting, diarrhea, abdominal pain, and perhaps bleeding in either the diarrhea or the vomiting. If untreated such an infection could then spread to the bloodstream and be deadly. But the key here is that he must be prevented from reaching medical help. Otherwise he would be treated and survive. But untreated his chance of survival is dramatically reduced. So you need to figure a way to prevent him from reaching medical care once he developed symptoms.

As for what bacteria to use, both ptomaine and botulism would be very difficult to come by. They are rare and your cook would have no access to this type of organism. He could of course damage a can of some food product and leave it sitting in a warm environment and hope that the right bacteria grew but most likely it would not be the bacterium that causes botulism. That’s actually quite rare. So there would be no way for him to predict what organism would occur under that circumstance.

On the other hand, things such as E. coli, Salmonella, and Shigella are quite common causes of food-borne gastrointestinal illness. If your chef knew someone who was infected with one of these, perhaps from a recent trip to Mexico where these are not uncommonly encountered, he could then use this individual to supply the needed bacteria. How would he do this? The best way would be to obtain some stool from the infected individual. This could be from contaminated toilet paper or an un-flushed toilet. Gross but that’s the way it is. This could then be placed into some food product and allowed to grow, which he could simply do a closet at home. He could then add some of this bacterial soup to the food product and in this way introduce a large amount of bacteria to the victim. Even better would be if he could find a way to inject this intravenously into the victim but that’s not absolutely necessary.

Again, this would make the victim very ill with gastrointestinal symptoms. Then, as I said, you’ll need to devise some scenario that prevents him from reaching medical help and if so he could easily die from sepsis.

There is an excellent non-fiction book in which a murder is committed exactly like this. It involves the murder of Joan Robinson Hill by her husband Dr. John Hill. It took place in the 1960s in Houston Texas and is an incredible story. The book is titled Blood and Money and was written by Tommy Thompson. If you can a copy of this it might help. Dr. Hill apparently grew bacteria in petri dishes at home and infected cream puffs to kill his wife. He then admitted her to a small hospital in the outskirts of Houston and he managed her care, which amounted to preventing her from getting adequate treatment since he did not offer her the treatment she needed. It became a huge and convoluted case that did indeed involved blood and money.

 

Forensics For Dummies, 2nd Edition Coming Soon

 

FFD 300X378

 

Just got the new cover for Forensics For Dummies, 2nd Edition.

It will be released from Wiley on 2-29-16

Pre-Order now

 
 
%d bloggers like this: