RSS

Category Archives: Medical Issues

Criminal Mischief: Episode #48: Three Famous Toxicology Cases

AOTA

Criminal Mischief: Episode #48: Three Famous Toxicology Cases

LISTEN: https://soundcloud.com/authorsontheair/three-famous-poisoning-cases

PAST SHOWS: http://www.dplylemd.com/criminal-mischief.html

SHOW NOTES:

Poisons and drugs have been used as murder weapons for many centuries. Sometimes the poison itself does the killing and other times it simply facilities the use of another method. Here are three famous cases involving poisons and drugs.

Kristin Rossum: The American Beauty Murder

Wikipedia: https://en.wikipedia.org/wiki/Kristin_Rossum

Murderpedia: http://murderpedia.org/female.R/r/rossum-kristin.htm

Stella Nickell: Product Tampering

Wikipedia: https://en.wikipedia.org/wiki/Stella_Nickell

Murderpedia: https://murderpedia.org/female.N/n/nickell-stella.htm

Daily News: https://www.nydailynews.com/news/crime/wash-woman-poisoned-husband-planted-tainted-pills-1986-article-1.3163801

Kurt Cobain: Murder or Suicide?

Wikipedia: https://en.wikipedia.org/wiki/Suicide_of_Kurt_Cobain

All That’s Interesting: https://allthatsinteresting.com/kurt-cobain-murdered

CBS News Photos: https://www.cbsnews.com/pictures/new-kurt-cobain-death-scene-photos/

 

Carbon Dioxide Shows Up (And Kills) in Unexpected Places

Carbon Dioxide (CO2) is everywhere. It’s the predominant gas you exhale with each breath. It comes from many other sources, including grape fermentation. This was tragically evident when four members of a winemaking family in Italy attempted to stir their barreled wine. Things didn’t go well.

https://www.newser.com/story/311791/freak-winemaking-accident-kills-4-members-of-family.html

Carbon Dioxide (CO2) is present in very low amounts in the atmosphere but when its concentration increases above 10%, it replaces the Oxygen (O2) available for breathing to the point that hypoxia (low oxygen) results and death from asphyxiation becomes a real risk. In the wine-makers’ case, the CO2 generated by the wine fermentation built up within the enclosed space and reached toxic levels. The result of excess CO2 and lowered O2 in the air is confusion, disorientation, collapse, coma, and death from asphyxia.

Not as dangerous as its cousin, Carbon Monoxide (CO), CO2 remains a deadly gas.

On 6-29-21, I recorded a podcast on Criminal Mischief: The Art and Science of Crime Fiction about Carbon Monoxide (CO) poisoning.

For more on CO2, CO, and other deadly gases, check out:

OR

 

Criminal Mischief: The Art and Science of Crime Fiction: Episode #47: Amnesia and Trauma

Criminal Mischief: The Art and Science of Crime Fiction: Episode #47: Amnesia and Trauma

LISTEN: https://soundcloud.com/authorsontheair/episode-47-amnesia-and-trauma

PAST SHOWS: http://www.dplylemd.com/criminal-mischief.html

SHOW NOTES:

Amnesia has been a part of fiction for many years. Jason Bourne in The Bourne Identity is a classic example. The character was apparently based on the real-life case of Ansel Bourne, who in 1887 was likely the first documented case of amnesia. Even Agatha Christie suffered her own brush with amnesia—or maybe not. This one has been the source of argument and conjecture for decades.

I frequently receive questions from crime writers about amnesia so it remains a common topic. In fact, amnesia questions were included in my Question and Answer books. One of the best:

Can A Blow To the Head Cause Unconsciousness and Amnesia?

Q: How hard do you have to be hit on the head to be knocked unconscious? Is there a particular place on the head, that if struck would be more likely to cause unconsciousness? How long does it usually last? How hard do you need to be hit to cause partial or temporary amnesia? What sort of things do people forget in these situations? How long does it usually last? Are there any other physical symptoms a writer should be sure and include in a scene with head trauma?  

A: In medical terms a blow to the head, or anywhere else, is called blunt force trauma as opposed to sharp force trauma as would occur with a knife or some other cutting instrument. When the blow is to the head, it is called a blunt head injury.

The degree of force required to render someone unconscious is completely unpredictable and varies from situation to situation and from person to person. Though a minor tap on the head is not likely to cause unconsciousness in anyone, almost any blow of significant force can. It makes no difference where the blow strikes the head as far as causing unconsciousness is concerned. That is, a blow to the front of the head is no more likely or less likely to cause unconsciousness than would one to the side or back of the head.

The period of unconsciousness in a simple concussion, which is what loss of consciousness due to blunt force head injury is called, is measured in seconds or minutes. Unlike Hollywood where the bad guy is slugged in the jaw, knocked unconscious, and then written out of the script after that — or at least the hero no longer has to worry about him — is not what happens in real life. Think about every boxing match you’ve ever seen. One guy smacks the other one, knocking him unconscious, and 30 seconds later the guy is awake and complaining that it was a lucky punch. This is what really happens. 

Unconsciousness from a simple concussion can last several minutes and maybe even up to 10 or 15 minutes, though that would be unusual. Typically the person wakes up with a minute or so but might be slightly groggy or confused for a while, again for several minutes. But if he is unconscious for longer than a few minutes, the odds are that a serious injury to the brain has occurred or that bleeding into and around the brain has happened, Both of these situation are true medical emergencies. It doesn’t sound like that’s the situation you are posing with your questions.

Amnesia can indeed follow blows to the head. Typically the blow has to be powerful enough to render the person unconscious or at least woozy before amnesia enters the picture. But I should point out that other than the time period the victim is actually unconscious there is no loss of memory in the overwhelming majority of people who suffer head injuries. Amnesia is not rare but it is not common. But amnesia can occur after head injury, so you can absolutely use this in your story.

Amnesia comes in many flavors but they are usually divided into retrograde and anterograde types. Anterograde amnesia is very rare and is a situation where the person cannot form new memories. This was the subject of the excellent movie Memento. I won’t dwell on this since this is not the type of amnesia your questions deal with.

Retrograde simply means whatever came before. This type of amnesia is the most common in that the person forgets things that happened before the injury. This amnesia can cover events that occurred for only a few minutes before the injury, a few hours, a few days, weeks, or months, or can go back to forever. The person can forget some things and not others, such as he might not remember his name but might remember his address and phone number. He might remember some people but not others. He might recognize people but not be able to recall their names. 

Or he could have what is called global amnesia in which he remembers nothing, not his name, not where he is, not where he came from, and virtually everything else. This type of amnesia can be temporary or permanent. It may only last for a few minutes, hours, days, or months or in some people it can last forever and be a permanent loss of memories. 

When memories begin to return, they can come back suddenly and completely, partially, or in fits and spurts. The person might remember some things within a few minutes but other things might be lost in the cloud of amnesia forever. Virtually anything can happen so this means that your story can be crafted in almost any way you wish.

The other symptoms that can be associated with a concussion of this type are headaches, dizziness, poor balance, nausea, blurred vision, and generalized weakness and fatigue. These symptoms usually are minor and only last a few hours but they can become more problematic and last for many days and in some people for many months. There is no real treatment other than time and perhaps medications for headaches if they become chronic.

LINKS:

Ansel Bourne Wikipedia: https://en.wikipedia.org/wiki/Ansel_Bourne

The Real Bourne Identity: The Psychology of Ansel Bourne:

https://www.psychologytoday.com/intl/blog/mind-brain-and-value/202010/the-real-bourne-identity-the-psychology-ansel-bourne

Mysteries of the “Mystery” Author Agatha Christie’s Disappearance in 1926: https://historycollection.com/mysteries-of-the-mystery-author-agatha-christies-disappearance-in-1926/

Mayo Clinic: Amnesia: https://www.mayoclinic.org/diseases-conditions/amnesia/symptoms-causes/syc-20353360

My Q&A Books:

MURDER AND MAYHEM

FORENSICS AND FICTION

MORE FORENSICS AND FICTION

 

Thorne & Cross: Carnival Macabre: What Hollywood Gets Wrong with DP Lyle

Tamara Thorne and Alistair Cross have a new gig, Carnival Macabre, which replaces their excellent Haunted Nights show. But it didn’t tamp down their zaniness.

I had a great time talking about Hollywood, crime, and storytelling. Take a listen.

https://carnivalmacabre.libsyn.com/thorne-cross-carnival-macabre-what-hollywood-gets-wrong-with-forensics-expert-dp-lyle

Top 10 Writers’ Medical Mistakes

D. P. Lyle, MD

The Quick Death: No one dies instantly. Well, almost no one. Instant death can occur with heart attacks, strokes, extremely abnormal heart rhythms, and cyanide and other “metabolic” poisons. Cyanide and a few other chemicals prevent the body’s cells from using oxygen so death arrives in a hurry. But trauma, such as gunshot wounds (GSWs) and blows to the head, rarely cause sudden death. Yet, how often has a single shot felled a villain? Bang, and he drops dead. In order for that to occur, the bullet would need to severely damage the brain, the heart, or the cervical (neck) portion of the spinal cord. A shot to the chest or abdomen leads to a lot of screaming and moaning, but death comes from bleeding and that takes a while.

The Pretty Death: I call this the “Hollywood Death.” Calm, peaceful, and not a hair out of place. Blood? Almost never. The deceased is nicely dressed, lying in bed, make-up perfect, and with a slight flutter of the eyelids if you look closely. Real dead people are ugly. I don’t care what they looked like during life, in death they are pale, waxy, and gray. Their eyes do not flutter and they do not look relaxed and peaceful. They look dead.

The Bleeding Dead: Your detective arrives at a murder scene a half hour after the deed. Blood oozes from the corpse’s mouth and from the GSW in his chest. Tilt! Dead folks don’t bleed. You see, when you die, your heart stops and the blood no longer circulates and it clots. Stagnant or clotted blood does not move. It does not gush or ooze or gurgle or flow or trickle from the body. 

The Accurate Time of Death: Determining the time of death is neither easy nor very accurate. It is always a best guess and is stated as a range and not an exact time. Yet, how many times have you seen the detective or the ME confidently announce that the victim died at “10:30 last night”? I always wonder exactly how he made this determination. Was it rigor mortis, body temperature, or lividity? Was it the presence of absence of certain bugs? Of course, the problem is that none of these is accurate. In real-life the ME would say that death likely occurred “between 8 p.m. and midnight.” But that might make him appear wishy-washy and Hollywood likes its heroes to be smart. Smarter than they could possibly be.

The One-punch Knockout: You’ve seen and read this a million times. The hero socks the bad guy’s henchmen in the jaw. He goes down and is apparently written out of the script, since we never hear from him again. It’s always the henchmen, because the antagonist, like most people, requires a few solid blows to go down. Think about a boxing match. Two guys that are trained to inflict damage and they have trouble knocking each other out. And when they do, the one on his back is up in a couple of minutes, claiming the other guy caught him with a lucky punch. Listen to me. Only James Bond can knock someone out with a single blow. And maybe Mike Tyson. Your car-salesman-turned-amateur-sleuth cannot.

The Disappearing Black Eye: If your character gets a black eye in Chapter 3, he will have it for two weeks, which will likely take you through the end of the book. He will not be “normal” in two days. A black eye is a contusion (bruise). It is caused by blood leaking from tiny blood vessels, which are injured by the blow. It takes the body about two weeks to clear all that out of the tissues. It will darken over two days, fade over 4 or 5, turn greenish, brownish, and a sickly yellow before it disappears. On a good note, by about day 7, your female character may be able to hide it with make-up.

The Quick Healing: This is a corollary to the above. If your character falls down the stairs and injuries his back, he will not be able to run from or chase the bad guy or make love to his new lover the next day. Give the guy a few days to heal and make him limp and complain in the interim. If he breaks an arm, he’ll need 4 weeks minimum.

The Untraceable Poison: No such thing. With fancy equipment like Gas Chromatography-Mass Spectroscopy (GS-MS) virtually any chemical can be identified. The combination of these two tests gives a “chemical fingerprint” of the compound in question. The trick is to disguise the death to look like something else so that an expensive and time consuming full toxicological examination will not be done.

The Instant Athlete: Your PI drinks too much, smokes too much, and eats donuts on a regular basis. He will not be able to chase the villain for 10 blocks. Two on a good day. If he must, then make him capable. Remember “Babe” Levy (Dustin Hoffman) in Marathon Man? He had to run for his life as Dr. Christian Szell (Sir Laurence Olivier) and his Nazi bad guys chased him endlessly. But earlier in the film we learned that he ran around the reservoir in Central Park everyday. He could run for his life.

The Instant Lab Result: The world is not like CSI. They get results in a New York minute. In the real world the same test can take days, even weeks. A preliminary or presumptive test may be done quickly, but most confirmatory testing takes time. And the coroner will not likely release a report until the results are confirmed.

 

Poisons: The Perfect Murder Weapon on YouTube

Poisons: The Perfect Murder Weapon with DP Lyle, MD

MWA Rocky Mountain Chapter Event on YouTube

Many thanks to the MWA Rocky Mountain Chapter for hosting this event and asking me to do it.

Great group.

 

Munchausen by Proxy: A Disturbing Psychiatric Disorder

Munchausen by Proxy: A Disturbing Psychiatric Disorder

 

 

Hollywood portrays Baron Munchausen as a comedic character but the medical syndromes that bear his name aren’t very funny. 

People fake illnesses all the time. To get out of work, to avoid going to some event, to miss a test they haven’t studied for, or just because they want to lay around and take a day doing nothing. Everyone has called in sick. But then there are others who fake illnesses in order to undergo medical testing and procedures and perhaps to garner the attention that being perceived as ill will bring their way. Munchausen syndrome is where someone fakes illnesses in order to visit with physicians and hospitals and undergo testing and sometimes very dangerous treatment, even surgery. After all, doctors listen to the patient and then evaluate them for the possible illness, or illnesses, that could be underlying their complaints. As a physician, distinguishing true complaints from confabulations isn’t always easy. The tendency is, of course, to accept what the patient says as the truth and move on from there. Patients with Munchausen Syndrome often are very talented liars and are also well-versed in the illness they are faking.

Munchausen by proxy takes this to an entirely different level. Here, a parent will manufacture complaints for a child and then subject them to medical testing and treatment. Even worse, they will actually do harm to the child, sometimes even adding poisons to their food so that they will become ill and require medical intervention. What does the parent gain from this? It’s not as simple as it seems but for sure one thing is they gain the attention and sympathy of the child’s caregivers. This is an extremely complex psychological problem that is sad on so many levels.

The recent case of Megan Gee and her four-year-old son is one of the worst I’ve read about. In four years he had 227 interactions with medical professionals and institutions. Unbelievable.

A few years ago on Crime and Science Radio, Jan Burke and I interviewed Beatrice Yorker, an expert in the field. Listen in and check out the accompanying links for further study.

Fort Worth Star-Telegram Article: https://www.star-telegram.com/news/local/crime/article235483297.html

Munchausen Syndrome WebMD: https://www.webmd.com/mental-health/munchausen-syndrome#1

Munchausen By Proxy Healthline: https://www.healthline.com/health/munchausen-syndrome-by-proxy

Beatrice Yorker Interview: http://www.dplylemd.com/csr-past-details/beatrice-crofts.html

 

Criminal Mischief: The Art and Science of Crime Fiction: Episode #34: Toxicology Part 3

Criminal Mischief: Episode #34: Toxicology Part 3

 

LISTEN: https://soundcloud.com/authorsontheair/episode-34-toxicology-part-3

PAST SHOWS: http://www.dplylemd.com/criminal-mischief.html

SHOW NOTES:

From HOWDUNNIT: FORENSICS

COMMON DRUGS, POISONS, AND TOXINS 

In the remote past, most poisoners favored botanical products such as hemlock, oleander, deadly nightshade, foxglove, hellebore, monkshood, opium, and many others. These were easily available and untraceable. More recently, various chemicals have been added to this long list of plant-based poisons, which has made the work of the toxicologist that much more difficult. 

I said earlier that when the forensic toxicologist is faced with determining whether an individual’s death or abnormal behavior is related to toxin exposure, he will use all evidence, including the results of toxicology testing, the autopsy examination, and statements from investigating officers and witnesses. To effectively use this information, he must be familiar with many aspects of drugs and poisons: He must know the chemical makeup and physiological actions of drugs and their breakdown products; understand how drugs are metabolized in the body and what the potential toxic properties of these metabolites are; know how these chemicals affect a normal person, as well as those with various illnesses and addictions; and be aware of the symptoms and signs produced by these chemicals. In addition, a working knowledge of street and recreational drugs is essential, since these are often involved in injury and death. 

Obviously, a discussion of every known chemical, drug, and poison is far beyond the scope of this book. We will, however, look at many of those that crop up in real-life cases as well as in works of fiction. 

We will examine the things that the ME and the toxicologist consider in assessing the effects of any of them in death, injury, or legal matters. For example, some drugs cause severe depression or addiction and may lead the user to take his own life. Others may distort perceptions to the point that the user accidentally causes self-harm through some foolish act. Trying to fly from a building would fit this description. Other drugs may cause anger, aggression, or an actual psychotic episode, and the user may commit assaults or homicides while under the chemical’s influence. Some drugs are so addictive that the user will commit all types of illegal acts (robbery, assault, or murder) to obtain money to purchase them. Other substances are just downright deadly. 

ALCOHOL

Alcohol is derived from the fermentation of sugars and comes in a variety of types, with ethanol (ethyl, or drinking alcohol), methanol (methyl, or wood or denatured alcohol), and isopropanol (isopropyl, or rubbing alcohol) being the ones most commonly encountered. All alcohols are central nervous system (CNS) depressants. Central nervous system basically means the brain. These alcohols cause sleepiness, poor coordination, slowed movements and reactions, and distorted perceptions. In short, all the symptoms and signs you recognize in someone who is drunk. In larger amounts, they can lead to coma, cessation of breathing, and death from asphyxia. 

Ethanol 

Ethanol is by far the most commonly abused drug. Not only are its toxic effects potentially lethal, but the loss of coordination and poor judgment that is associated with its use can lead to violent and negligent acts. There is potential for physical addiction with alcohol and withdrawal can be an arduous and dangerous process. Without proper medical treatment, death rates from alcohol withdrawal syndromes, such as delirium tremens (DTs), can be 20 percent or more. 

Alcohol in the body follows a fairly simple pathway. Once ingested, it is absorbed into the bloodstream and disseminated throughout the body, where 95 percent of it is metabolized (broken down) by the liver into water and carbon dioxide. The remaining 5 percent is excreted unchanged through the kidneys and lungs, a fact that is critical to sobriety testing. 

Alcohol Metabolism 

The body eliminates most toxins in what is called a dose-dependent fashion; that is, the higher the dose taken, the more rapidly the toxin is metabolized. A small amount activates only some of the enzymes that break down the toxin, whereas a larger amount activates more enzymes in order to handle the increased load of toxin. 

Alcohol is metabolized in a linear fashion in that any amount of alcohol intake activates all the enzyme systems that destroy it. This means that from the first drink, the system operates at almost maximum efficiency and there is little or no ability to increase it. The average rate of ethanol destruction in the body is roughly equivalent to one drink per hour. 

Why is this important? With rapid intake of alcohol, as is seen in binge drinking that is so common among college students, the body has no method for increasing the removal of the alcohol. The system is already running at top speed and excessive intake overruns the body’s ability to deal with it. The result is that the concentration of alcohol in the blood will rise rapidly and this can lead to coma and death. 

Methanol 

All alcohols are potentially toxic, but methanol is particularly so. Methanol is the denatured alcohol used in Bunsen burners in high school science or chemistry classes. Unlike ethanol, the liver converts methanol to formic acid and formaldehyde, the same stuff the coroner uses to preserve the tissues he removes from corpses. 

Methanol ingestion causes nausea, vomiting, pancreatic and other organ damage, confusion, loss of coordination, and brain damage that can lead to blindness, seizures, coma, and ultimately death from asphyxia. 

Isopropanol 

Isopropanol is also an intoxicant and a CNS depressant whose effects usually appear within ten to thirty minutes after ingestion, depending upon the amount consumed and whether food or other beverages are taken as well. Fifteen to 20 percent of ingested isopropanol is converted to acetone, which produces acidosis (excess acid in the body). This greatly complicates things. The victim appears drowsy and off balance, and possesses a staggering gait, slurred speech, and poor coordination. Nausea, vomiting (sometimes bloody), abdominal pain, sweating, stupor, coma, and death from respiratory depression may follow. Hemorrhage into the bronchial tubes (breathing tubes or airways) and chest cavity may occur. 

Isopropanol also absorbs through the lungs and the skin. Not infrequently, infants experience isopropanol toxicity from alcohol-and-water sponge baths used to treat childhood fevers. 

OTHER CNS DEPRESSANTS

Opiates, barbiturates, and other tranquilizers are CNS depressants. They make a person sleepy and lethargic and are called downers. 

Opiates 

Opiates are in the alkaloid family of chemicals and are derived from the sap of the poppy. The opiates are divided into natural, semisynthetic, and synthetic, depending upon their source and method of manufacture. They are narcotic sedatives (sleep producing) and analgesics (pain relieving) that produce euphoria, lethargy, and, in larger doses, coma and death from respiratory depression and asphyxia. This is more common when an opiate is mixed with alcohol, which is also a brain depressant. Most opiates are taken either by mouth or injection, and all have great potential for abuse and physical addiction. 

Natural opiates come directly from the poppy with morphine, a powerful narcotic much like heroin, and codeine being the basic ones. Codeine is found in many cough suppressants, has a low potential for abuse, and, unless used with alcohol, rarely causes death. Combining morphine with acetic anhydride or acetyl chloride produces heroin (diacetylmorphine), which is by far the most commonly abused opiate. 

After injection, heroin is almost immediately broken down into monoacetylmorphine and then to morphine. In the living user, testing typically only reveals morphine since this two-step conversion process occurs fairly quickly. This means that the testing cannot determine if the person used heroin or morphine, since in either case only morphine would be found. 

The autopsy findings in individuals who die from a heroin overdose are fairly consistent. The ME usually, but not always, finds evidence of pulmonary edema, which is water in the lungs. The lungs often show evidence of talc crystals and cotton fibers, as these are used to cut and filter the heroin, respectively. When the drug is given intravenously, these crystals and fibers are carried through the right side of the heart and are filtered from the blood and trapped by the lungs. 

Semisynthetic opiates are created by molecular alterations of morphine and codeine. Many medical analgesics are of this type. Hydrocodone, oxymorphone, and oxycodone (OxyContin) are examples. 

Synthetic opiates are constructed in a laboratory and are not derived from either morphine or codeine. Methadone is the best known of this class because of its use in treating heroin addiction. Other synthetic opiates include meperidine (Demerol) and fentanyl drugs.

Barbiturates 

Barbiturates are derived from barbituric acid. Known as hypnotics (sleeping pills), they include pentobarbital, amobarbital, secobarbital, butabarbital, and phenobarbital. Only phenobarbital, an excellent anticonvulsive (prevents seizures) medication, is widely used today. When mixed with alcohol, barbiturates can readily lead to coma and death from asphyxia. 

CNS STIMULANTS 

Stimulants or “uppers” are a commonly abused class of drugs that rev up the nervous system and pump up the blood pressure and heart rate. The ones most commonly used are amphetamines and cocaine. These drugs increase alertness, lessen fatigue, and suppress appetite. However, with continued use, they cause irritability, anxiousness, aggressive behavior, paranoia, fatigue, depression, and death. 

Chronic users tend to develop tachyphylaxis. This means that the body “gets used to” them and their effects are lessened. The user must take ever-increasing amounts to get the same “kick” because the body produces more of the enzymes that metabolize these drugs so that they are destroyed and eliminated at a faster rate. 

Amphetamines 

Amphetamines belong to the phenethylamine class of chemicals and are what we term sympathomimetics, in that they mimic, or act like, the sympathetic side of the autonomic nervous system. This is the fight or flight response. Amphetamines rev up the body for emergency action. To do this, they increase blood pressure, heart rate, and respiration, and produce euphoria and a sense of high energy. 

Cocaine 

Cocaine is a CNS stimulant that increases alertness, elevates blood pressure and heart rate, and raises body temperature. In higher amounts, it can lead to seizures, strokes, heart attacks, and death.

Typically, cocaine is snorted, or inhaled through the nose. When introduced this way, it rapidly absorbs through the membranes that line the nose and enters the bloodstream. Its effects are felt in just a few minutes. As with amphetamines, cocaine has the problem of tachyphylaxis so the “high” tends to diminish with repeated use. So, abusers have found even faster ways of reaching the “high” they seek. 

Cocaine can be mixed with baking soda and water, and heated until all the liquid is evaporated; the solid material remaining is crack cocaine. This form has a much lower boiling point (becomes a gas at a lower temperature), which allows it to be smoked. When inhaled, this gaseous form is very rapidly absorbed through the lungs and into the bloodstream.

HALLUCINOGENIC DRUGS 

Hallucinogens alter perceptions and mood, lead to delusional thinking, and cause hallucinations. 

Delusions are beliefs that have little or no basis in reality. The person might believe that he is being watched or monitored or that his neighbor, boss, or spouse is trying to harm him. 

Hallucinations are sensory experiences that are not real. That is, they are not an abnormal sensing of some sensory input; rather, the entire sensory experience is created within the person’s mind. These creations may involve any or all of the senses. They may be visual, auditory, olfactory, taste, or tactile. Sometimes these sensations are so real that the person can’t separate the hallucination from reality, or worse, the hallucination becomes the reality. 

Hallucinations are part of severe schizophrenia and other mental disorders and can occur in victims of strokes or senile dementia. They are often seen with use and withdrawal from alcohol and other drugs. Hallucinogenic drugs are specifically designed to produce hallucinations. 

The most frequently encountered hallucinogens come from the plant world (marijuana, peyote, and mushrooms) or the chemistry laboratory (LSD, STP, and PCP). Their identification depends upon both physical and chemical analyses.

Cannabinoids 

By far the most commonly used hallucinogen, and one of the mildest, is marijuana. It goes by many street names including Mary Jane, weed, and pot. It is a cannabinoid, which means it is derived from the Cannabis sativa plant. The active ingredient tetrahydrocannabinol (THC) is found in marijuana at a concentration of 2 to 6 percent. Hashish is the oily extract of the plant and contains approximately 12 percent THC. 

Though marijuana can be added to food and eaten, the most common method of introduction is through smoking. It is rapidly absorbed through the lungs, reaches peak blood levels in fifteen to twenty minutes, and usually lasts about two hours. It produces euphoria, sedation, loss of memory, reduced coordination, and also stimulates appetite. 

The body breaks down THC into a series of compounds, the most important being 9-carboxy-tetrahydrocannabinol (9-carboxy-THC), which is the major urinary metabolite. Urine drug testing looks for this compound, which can be found up to ten months after last use. One problem is that even passive exposure can lead to a positive urine test. For example, if a person is in the area where someone is smoking marijuana, his urine may reveal low levels of 9-carboxy-THC. 

Cacti and Mushrooms 

Peyote is a small Mexican cactus that has enjoyed a ceremonial use by many native tribes for centuries. The active chemical in the plant is mescaline, which is a hallucinogen in the alkaloid family. Either TLC or GC can confirm the presence of the alkaloids. Further testing to identify mescaline is not necessary since the possession of plant material itself is illegal. 

Mushrooms present a different problem. With marijuana and peyote the mere possession of the plant is illegal, while the possession of mushrooms is not. This means that the toxicology lab must identify the psychoactive components (psilcin and psilocybin) of the mushroom before they can be deemed illegal. 

LSD AND OTHER HALLUCINOGENIC CHEMICALS 

There are a wide variety of chemically produced hallucinogens, with the most common ones being lysergic acid diethylamide (LSD) and phencyclidine (PCP or angel dust). 

LSD is very potent and as little as 25 micrograms can produce an “acid trip” that lasts for twelve hours. Though LSD is not directly fatal, the hallucinations it produces are typically vivid and there have been many instances of users harming themselves because of these altered perceptions. The primary screening test for LSD is the Van Urk color test. 

PCP is an extremely powerful drug with unpredictable effects. It comes as a powder or in a capsule or pill. It can be swallowed or smoked. PCP can cause depression, irritability, feelings of isolation, and is notorious for producing psychosis, paranoia, and violent behavior. An acute schizophrenic episode may suddenly occur many days after use. In a large enough dose, it can cause seizures and death. 

Immunoassay of urine is used for PCP screening and may remain positive for a week after last use. GC/MS provide confirmation. 

Other chemical hallucinogens include dimethoxymethylamphetamine (STP), dimethyltryptamine (DMT), and methylenedioxymethamphetamine (MDMA), also known as ecstasy. 

DATE RAPE DRUGS 

The date rape drugs are a collection of chemicals of various types that share the ability to make the user relaxed, disoriented, and compliant. Some are pharmaceutically manufactured, while others are cooked up by someone with marginal experience and a chemistry book. The major members of this group are Rohypnol (flunitrazepam), ecstasy, GHB (gamma-hydroxybutyrate), and ketamine hydrochloride. 

Rohypnol, GHB, and ketamine are commonly used in date or acquaintance rapes, which is where the moniker comes from. They cause sedation, a degree of compliance, poor judgment, and amnesia for events that occur while under their influence. These properties make them effective in date rape situations. 

A small amount of GHB or Rohypnol can be slipped into the victim’s drink or a bottle of innocuous-appearing water. She may appear and act normally, or might seem happy, excited, pleasantly sedated, or mildly intoxicated. Neither the victim nor her friends recognize how impaired she actually is. She might leave with her would-be assailant because her judgment is impaired and euphoria enhanced. Only later will she realize that something happened, but her memory of events will be spotty or absent. This is exactly what happened with Andrew Luster’s victims.

The reactions to these drugs are unpredictable and vary from person to person.

Rohypnol (Street Names: Roofies, Roaches, Rope, Mexican Valium) is a benzodiazepine sedative in the same family as Valium and was developed to treat insomnia. Currently, it is neither manufactured nor approved for use in the United States, but is available in Mexico and many other countries. It is manufactured as white tablets of either one or two milligrams that can be crushed and dissolved in any liquid. It takes action twenty to thirty minutes after ingestion, peaks in about two hours, and its effects may persist for eight to twelve hours. 

Rohypnol typically causes sedation, confusion, euphoria, loss of identity, dizziness, blurred vision, slowed psychomotor performance, and amnesia. The victim has poor judgment, a feeling of sedated euphoria, and vague or no memory of what has happened. 

Ecstasy (Street Names: E, X, XTC, MDMA, Love, Adam) was first manufactured in 1912 and originally patented in 1914 as an appetite suppressant but was never marketed. It disappeared until the 1960s when it was rediscovered and became a drug of abuse. Currently, it is made in underground labs and distributed in pill or capsule form. It has amphetamine (speed-like) as well as hallucinogenic effects. The user has enhanced sensations and feelings of empathy, increased energy, and occasionally profound spiritual experiences or irrational fear reactions. It may cause increased blood pressure, teeth grinding (bruxia), sweating, nausea, anxiety, or panic attacks. 

GHB comes as a white powder that easily dissolves in water, alcohol, and other liquids. Currently, it is often found as “Liquid E,” a colorless, odorless liquid that is sold in small vials and bottles. 

The effects of GHB appear five to twenty minutes after ingestion and typically last for two to three hours. It causes loss of inhibitions, euphoria, drowsiness, and, when combined with other drugs, increases the effects of these drugs. Users might also experience amnesia, enhanced sensuality, hallucinations, and amnesia.

Ketamine is a rapidly acting intravenous or intramuscular anesthetic agent that causes sedation and amnesia. It comes as a liquid, which is often heated and evaporated to a white powder residue. The powder can be added to a liquid such as a bottle of water, compacted into pills, or, most commonly, snorted. Whether swallowed or snorted, it takes effect almost immediately and is fairly short in its duration of action, typically forty-five minutes to two hours. 

Many of its effects are similar to ecstasy, but it also possesses dissociative effects, which means the person “dissociates” from reality in some fashion. Often the user experiences hallucinations, loss of time sense, and loss of self-identity. One common form is a depersonalization syndrome, where the person is part of the activities while at the same time is off to the side or hovering overhead watching the activity, including his own actions. As mentioned earlier, this reaction is also common with PCP. Users call these effects “going into a K Hole.” 

Since ketamine is a sedative and general anesthetic, its potential for serious and lethal effects is real. If too much is taken, the victim may lose consciousness, stop breathing, and suffer brain damage or die. 

MISCELLANEOUS TOXINS 

Cyanide is one of the most lethal chemicals known and can enter the body by inhalation, ingestion, or directly through the skin. The most common forms are the white powders sodium cyanide (NaCN) and potassium cyanide (KCN) and the gaseous hydrogen cyanide (HCN). Most poisonings are accidental, but suicidal and homicidal cyanide poisonings do occur. HCN is used in gas chamber executions. Cyanide is a metabolic poison, which means it damages the internal workings of the cells. 

Strychnine is a neuromuscular toxin that causes powerful convulsive contractions of all the body’s muscles. The body adopts a posture known as opisthotonos, which means the back is arched so that only the back of the head and the heels of the feet touch the floor. Death results from asphyxia, since breathing is impossible during such violent muscular contractions. At death, rigor mortis often occurs very quickly because the muscles are depleted of ATP during these contractions (see Chapter Five: Time of Death, “Rigor Mortis”). Strychnine is rarely used for homicide since its extremely bitter taste makes it difficult to disguise in food. It is occasionally used for suicide, but since it has the deserved reputation for being very painful, this is also rare. 

Mushrooms were discussed earlier (see “Hallucinogenic Drugs”). But those of the psilocybin variety are not nearly as sinister as are the mushrooms of the Amanita family, such as the death cap and death angel mushrooms. These poisonous mushrooms have been implicated in accidental, suicidal, and homicidal deaths. 

The death cap is so toxic that a single mushroom can kill. The two main toxins are amanitin, which causes a drop in blood sugar (hypoglycemia), and phalloidin, which damages the kidneys, liver, and heart. The real treachery of these mushrooms lies in that fact that the symptoms—nausea, vomiting, diarrhea, and abdominal pain—are slow to onset, typically beginning six to fifteen hours after ingestion, but can be delayed as much as forty-eight hours. In general, the later the onset of symptoms, the worse the chances for survival. This is because the toxins go to work on the liver and other organs almost immediately, but since symptoms are delayed for many hours, the victim doesn’t know to seek medical help until it is very late. At autopsy, the ME finds severe damage to the liver and the toxicologist might find a low level of sugar in the blood, as well as the amantin and phalloidin toxins. 

Ethylene glycol is the major ingredient in many antifreeze solutions. In the body, ethylene glycol breaks down into several compounds, the most important being oxalic acid. When oxalic acid is absorbed into the bloodstream, it reacts with calcium in the blood to form calcium oxalate. This reaction consumes the blood’s calcium, and low levels can cause a cardiac arrest and death. The calcium oxalate is filtered through the kidneys where it can clog up the microscopic tubules and severely damage the kidneys. At autopsy, the ME finds the crystals in the tubules of the kidney. Oxalic acid is also found in raw (not properly cooked) rhubarb, which can lead to accidental poisonings. It is rarely if ever used for suicide or homicide. Ingestion of this plant can irritate the gastrointestinal tract and cause mouth, throat, and esophageal pain and possibly bleeding. In those who die from this plant, the autopsy reveals a burned and irritated mouth, esophagus, and stomach, low blood calcium levels, and calcium oxalate sludge in the kidneys. 

Heavy metals are dangerous metallic elements such as arsenic, mercury, lead, bismuth, antimony, and thallium. Arsenic was the major homicidal poison for hundreds of years but is not frequently used now. One reason is that it works slowly. Even a large dose will take hours to kill someone. And since the death is very painful, the victim will often seek medical help before death and sur- vive. It is occasionally used as a chronic poison. 

The most common arsenical compound used in homicidal poisonings is arsenic trioxide, which is a white powder. A dose of 200 to 300 milligrams is usually lethal. Symptoms begin about thirty minutes after ingestion and include nausea, vomiting, abdominal pain, bloody diarrhea, a metallic taste in the mouth, and a slight garlicky odor to the breath. Arsenic severely damages the lining of the stomach and intestines and the ME will easily see this at autopsy in those who die. He will also find fatty deposits in the liver, kidneys, and heart. 

Lead poisoning is uncommon and usually occurs in an industrial setting. Occasionally children will peel away and eat wall paint that contains lead. Even though lead has not been a component of interior paints for decades, many older buildings still have layers of old lead-based paint. Lead poisoning can cause anemia, nausea, vomiting, abdominal pain, weakness, numbness, and seizures.

Insulin is a naturally occurring hormone that is essential for life. It is also synthetically manufactured and is a life-saving treatment for many diabetics. On occasion, diabetics die from an accidental overdose of insulin, but it has also been used for suicide and homicide. In fact, for many years it was considered to be an almost perfect murder weapon. The injection of a large dose dramatically drops the level of sugar in the blood, and since the brain needs a continuous supply of nutrition, death occurs very quickly. And since insulin is normally found in all of us, how could its presence raise suspicion? Now, insulin levels can be determined by radioimmunoassay and if the level at autopsy is found to be very high, the ME searches for a rare insulin-secreting tumor in the pancreas. If he finds no tumor, it is logical to suspect that insulin has been administered by someone else and the ME launches a search for hidden injection sites on the corpse. 

Succinyl choline is an injectable drug that paralyzes every muscle of the body and prevents all movement, even breathing. Death is from asphyxia. It has also been considered a nearly perfect murder weapon. 

After injection, it is very quickly metabolized by the body and leaves behind little evidence of its presence. However, since the 1980s the gas chromatography and mass spectrometry (GC/MS) combination has allowed for detection of the drug’s metabolites. If the ME suspects that this drug has been used, he takes blood samples as well as excises the tissues around any suspected injection sites and sends these materials to the toxicologist. Toxicological testing using GC/MS is directed toward finding metabolites of the drug, which, when found, proves that the drug was at one time present in the victim. This sophisticated testing was a direct result of the Carl Coppolino case. 

To dig deeper into this subject grab a copy of either 

FORENSICS FOR DUMMIES: http://www.dplylemd.com/book-details/forensics-for-dummies.html

HOWDUNNIT: FORENSICS: http://www.dplylemd.com/book-details/howdunnit-forensics.html

 

Dry Ice Can Kill You

OK, we all know that dry ice will keep things cool in your cooler, and even freeze things rock hard. You can also make that cool smoke coming out of a glass of water or maybe a centerpiece for a banquet or some such. Guess what? It can also kill you. 

It seems that at a birthday party in Moscow, they wanted to cool the pool down to take a nice bracing dip. So, they dumped some dry ice in. It cooled the water but also created a cloud over the top. Bet it looked really, well, cool.

The problem is that dry ice is the solid form of carbon dioxide (CO2). That’s the gas your body exhales through the lungs in order to get rid of it. High CO2 levels in the body are deadly. Normal ambient air is about 21% oxygen but contains only 0.04% CO2. So when the cloud of CO2 gas collected over the pool that obviously increased the level of CO2 while decreasing the level of oxygen (O2) by simple replacement. That is, each liter of air above the pool now contained a reduced amount of O2 and a greatly increased level of CO2. As the people breathed this mixture they became weak and dizzy and ultimately lost consciousness simply because they were not getting enough oxygen through their lungs to the bloodstream and ultimately to the brain. Apparently three of them died and many others were close. The take-home message is: don’t do this.

https://www.newser.com/story/287606/dumping-dry-ice-into-pool-kills-3-people-at-moscow-party.html

Lake Nyos

In 1986, a similar thing happened on a much larger scale at Lake Nyos in Cameroon. Some sort of geological event—-there is still controversy over exactly what happened—-created a CO2 cloud that spread across the area, killing over 1700 people. CO2 is heavier than air, so tends to hug the ground and settle in valleys and low areas. That’s what happened here. And at that Russian swimming pool.

https://en.wikipedia.org/wiki/Lake_Nyos_disaster

 

When Your Antagonist Goes Viral

When Your Antagonist Goes Viral
by DP Lyle

Imagine this: Your protagonist is faced with a deadly enemy that can’t be seen, felt, smelled, tasted. Undetectable until it’s way too late. Imagine victims dropping all around him, many with horrible and frightening symptoms and signs. Things like blotchy purple skin rashes, raspy, wheezy breathing, bloody vomiting and diarrhea, confusion or psychotic and aggressive behaviors. Yet the cause of all this mayhem is unseen, and unknown.

 

 

How do you identify such an enemy, or defend yourself from it?

Infectious diseases have terrorized the world for centuries. The Black Death was just one, the worst, of the plagues that swept through Medieval Europe. It killed one third, maybe one half, of Europe’s population. With many of the above symptoms. The meager state of medical care—-or understanding—in 1350 could do little. The church was equally impotent. 

Imagine the terror that gripped the entirety of Europe. What caused these horrible things to happen? Was it bad air, some miasma? Was it spread by one group or another? Was it punishment for your sins?

Where could you go to avoid the plague? What could you do to protect yourself and your family? Who could you turn to? What would you do if an infected stranger appeared at your door? Would you trust your local officials or pray to a God that let this happen? 

There were no heroes available at that time.

But there have been, and are, other plagues that are more modern and equally as deadly. The 1918 flu claimed millions of lives around the world. Now we have such pleasant afflictions as HIV, Ebola, and the Marburg virus. Besides, isn’t the coming Zombie Apocalypse due to an errant virus?

Scary stuff.

 

Plague Doctor

 

The Plague was caused by a bacterium that today is easily treated with antibiotics. Drugs that weren’t available in the 14th century. Okay, great, The Black Death can’t happen today. Not so fast. What about viruses? Things like Ebola and Marburg. We have little effective testament for these guys. So, a new Black Death is always possible. And as the world turns, new creatures are evolving. A series of simple mutations could easily produce the next pandemic and yet again kill off half the population. In fact, it probably will someday. History repeats itself.

And such an unseen enemy can make for a nearly perfect fictional antagonist. I mean, you can flash a mirror, or cross, at Dracula, or fire a silver bullet into the Wolfman, or simply run from Frankenstein—he wasn’t very fleet of foot. Godzilla stomping your city to rubble creates different, but not insurmountable, problems. 

But where do you hide from a virus? 

I’ve practiced medicine for over forty years and I can say without doubt that the greatest stress placed on any human is when they face death, disease, or injury. There are so many unknowns and the feeling of helplessness is universal. The same is true if the sufferer is a parent, child, or loved one. It produces anxiety on a very basic and visceral level.

This innate fear of death and disease is part of the human experience. And excellent fodder for thriller writing. Sure Frankenstein and Godzilla are scary, but what about an unseen, unavoidable, untreatable enemy? One that has no boundaries, permeating the air you breath, the water you drink, the loved one you hug. There is nowhere to hide since the miasma can creep beneath your door.

It doesn’t bite, or maul, or stomp, or any of those physical things, but rather attacks from within. By the time the victim realizes something is wrong, it’s often too late to fix. Or worse, there is no fix.

Infectious processes have been the subject of many thrillers, both written and cinematic. Michael Crichton’s Andromeda Strain (1971) was an early example. An organism comes from outer space and kills quickly. Earthlings have no defense. Just as Europeans had no defense when the Black Death appeared. Others include The Cassandra Crossing (1976), 28 Days Later (2002), and Outbreak (1995).

Thrillers need a resilient, believable, relentless, deadly, seemingly-unstoppable antagonist. An unseen infectious creature that attacks from within fits the bill.

The Black Death: http://www.historytoday.com/ole-j-benedictow/black-death-greatest-catastrophe-ever

1918 Flu: https://www.smithsonianmag.com/history/journal-plague-year-180965222/

Originally posted on the Horror Tree Blog: https://horrortree.com/when-your-antagonist-goes-viral/

 
 

Franken-Mosquitoes Are Coming

 

Do you know what the most dangerous creature in the world is? The one that has been responsible for more human deaths and illnesses than any other?

The mosquito. And it’s not even close.

They’ve brought us such pleasant surprises as malaria, yellow fever, the Zika virus, Dengue Fever, Sleeping Sickness, Chagas Disease, West Nile virus, and a bunch of other diseases you’ve probably never heard of. The number of illnesses and deaths ascribed to these various diseases is nothing short of staggering.

And now scientists have genetically altered the mosquito in the hopes that they would help lower the mosquito population. You see, these new “:Franken-mosquitoes” were supposed to die quickly. Didn’t happen, and even worse, these genetic changes just might make them harder to kill. Which means that the lowly, annoying mosquito could be an even more powerful disease transmitter. File this under unintended consequences.

Bugged Out: https://www.thesun.co.uk/tech/9947305/deadly-super-mosquitoes-accidentally-created/

WHO Executive Summary on Insect-borne Diseases: https://www.who.int/whr/1996/media_centre/executive_summary1/en/index9.html

 

 
1 Comment

Posted by on September 19, 2019 in Medical Issues