RSS

Category Archives: Asphyxia

Drowning In Space: When Your Space Suit Is Your Enemy

Gemini 4 Spacewalk

Gemini 4 Spacewalk

 

You would think that the last thing that an astronaut would fear while performing a spacewalk would be drowning. How on earth does that happen? Oh, wait a minute, he wouldn’t be on Earth. I guess out there in the wild blue yonder all the rules change. Ask Luca Parmitano, an Italian astronaut who worked on board the International Space Station (ISS). It seems that over a liter of water accumulated inside his helmet obstructing his ears and his eyes and raising the possibility that he could drown in space.

He isn’t the only one to suffer spacesuit problems during spacewalks, Extravehicular Activities or EVAs in NASA-speak. Here is an interesting article from The New Scientist on five such situations.

 

 
3 Comments

Posted by on September 3, 2013 in Asphyxia, Medical Issues, Space Program

 

Q and A: Can My ME Uncover Drugs in a Charred Corpse?

Q: I have two characters who are found dead in their house, having been at the center of a fire that turned into a wildfire. Before the fire, a hitman gave them some type of medication that he believed would not be detected in an autopsy to cause them to go unconscious or unable to move while he set the fire around them and escaped. The idea is that I want it to look — on the outside, at least — as though they accidentally caused the wildfire, starting in their home in the forest. Then, it’s discovered that they were, technically, murdered by someone giving them a strong sedative (or something) and they were burned in the fire.

When the medical examiner does the autopsy, what is he likely to be able to notice? I read that bodies are usually not burned completely in a fire, but what would the ME find? What kinds of things would he notice and talk about in the report?

Is there a drug that would have a sedative effect on the characters that would NOT show up in an autopsy? Or something that might show up with a particular test and what reasons could an ME have to run that test?

Kari Wolfe, Colorado Springs, CO

 

Iraqi Convoy Bombed During Persian Gulf War

 

A: You are correct that fires rarely destroy a body completely. The fire simply does not burn hot enough or long enough to completely destroy the body in most structure and automobile fires. The same would hold for wildfires. The body would likely be charged severely on the outside and for several inches down but deep inside most tissues would remain intact. This would allow the medical examiner to test the muscles, brain tissue, liver, blood, bone marrow, urine, and the vitreous humor inside the eyes for various drugs.

Almost any narcotic or sedative would work for your purposes but most of these are easily found with even simple toxicological screening and for sure by more sophisticated toxicological testing using gas chromatography and mass spectroscopy.

More sophisticated drugs are not revealed by a routine drug screen and therefore more difficult to find. Add to this the fact that the medical examiner might have no reason to go to the time and expense of looking for more esoteric toxins if all evidence pointed to the victim having died in the fire.

But what if the victim didn’t die in the fire? What if the victim was already dead before the fire started? This would change everything since in that case the medical examiner could not say that the cause of death was asphyxia from the fire but rather that something else must have killed the victim. In the absence of overt trauma or another obvious cause of death, the ME would likely do more complete toxicological testing.

 

How would the ME determine that the victim was dead before the fire? One clue would be the carbon monoxide level in the blood. If this is low, the victim was not breathing while the fire was consuming him. If the carbon monoxide level was high it would indicate that he was breathing and had inhaled carbon monoxide, which comes from the burning of wood and almost any other product. The normal carbon monoxide level is less than 5% but in victims of fire it can be 60 to 90%.

Also, if the victim was still breathing during the fire he would inhale soot and heat. The heat would damage the throat and airways and soot and other fire debris would be inhaled deeply into the lungs. Finding these would indicate the victim was alive while the fire burned and not finding them would suggest a prior death. This latter situation could launch a more complete toxicological analysis of the remains and ultimately lead to the lethal drug. Such testing could take many weeks, even months, so that you can delay the discovery of the true cause of death for almost as long as you need for story purposes.

Rare toxins you might consider would be succinylcholine, PSP (paralytic shellfish poisons), Rohypnol, GHB, and a few others.

 

Q and A: Can My ME Distinguish Death From Asphyxia From Death Due to Head Trauma?

Q: Here’s my book situation: A man puts a plastic bag over his head to kill himself. His wife wakes up next to him (after he nearly strangled her to death and she discovers he’s killed their son) and in her horror and rage cracks him over the head with a blunt object.

Here’s my question: Can the police/coroner/forensics determine which was the cause of death–suffocation or blunt force trauma? If so, what would the signs be pointing to asphyxiation?  Also, if it matters, this is set in 1969.

Judy Merrill Larsen, author of All the Numbers

http://www.judymerrilllarsen.com

A: If the victim died first from the asphyxia, the ME would have no problem since the blow to the head would cause no bruising or bleeding. At death the heart stops and blood flow ceases and a corpse will not bleed or bruise easily. So the ME would see a mark where the victim was struck but no bleeding or bruising and know that the blow was delivered post-mortem.

If he was still alive when struck, things become a little more difficult for the ME but he should still be able to tell. Bruising and bleeding at the site of the blunt trauma would show that the victim was alive when struck but if there is no significant brain injury found at autopsy he would know that the force of the blow did not cause death and the asphyxia must have. If there is a brain injury such as cerebral contusion (brain bruise) or bleeding into or around the brain, he might have difficulty determining the actual cause of death. Of course any evidence of blunt trauma would point to homicide and not suicide since someone using a plastic bag for suicide would not likely also strike themselves in the head.

But I see a bigger problem with your scenario. If she was unconscious from being strangled, she would wake up within 10 seconds to a minute or so after the pressure was released unless she had significant brain injury from lack of oxygen. If she were simply strangled into unconsciousness, which is due to blocking blood flow thru the carotid arteries to the brain and not blocking breathing, as soon as the pressure was released and blood flow reestablished, she would wake up very quickly. Much sooner than he could put a bag on his head and die from asphyxia. For her to be out that long would require some degree of brain injury and I don’t think that’s what you want. Of course, if he drugged her first and then strangled her to the point he thought she was dead, but she in fact wasn’t, then she would awaken when the drug effect wore off. Here he could be dead for hours before she awakened.

 

 

Carbon Monoxide: A Deadly Gas

From HOWDUNNIT: FORENSICSWhen more than one person is found dead in a house or a car and there is no evidence of trauma, carbon monoxide toxicity is considered. The odds of two or more people dying from natural causes at the same time and the same place are extremely remote.

Such is the case of “Buckwild” star Shane Gandee who was found dead, along with two other men, in a vehicle partially submerged in mud. The supposition is that mud clogged the vehicle’s tail pipe and this allowed carbon monoxide (CO) to accumulate inside the passenger compartment, resulting is death from asphyxia.

When I first read the circumstances surrounding this tragedy, my first thought was CO. With no signs of trauma, little else made sense. Apparently the authorities have agreed that this was the cause of death.

 

Howdunnit 200X267

 

Also from HOWDUNNIT: FORENSICS: CHAPTER 8: ASPHYXIA

CARBON MONOXIDE

Deaths from carbon monoxide poisoning are usually suicidal or accidental. It is an uncommon method for homicide, but it has been reported. Carbon monoxide is stealthy, treacherous, deadly, and common. A family is found dead and the cause is a faulty heater or fireplace. A suicide victim is found in his garage with the car engine running. Campers are found dead in a tent, a kerosene lantern burning in one corner. Each of these is due to carbon monoxide poisoning.

Carbon monoxide is a tasteless, odorless, colorless gas that is completely undetectable by humans. It results from the incomplete combustion of carbon-containing fuels—paper, wood, gasoline, and many other combustible products. Complete combustion of one of these fuels yields carbon dioxide (CO2). If there is a deficiency of oxygen or if the fi re is smoldering and doesn’t produce enough heat to drive the reaction to completion, incomplete combustion occurs and the result is the production of carbon monoxide.

Wood, coal, and gas are common carbon-containing fuels. Faulty stoves,heaters, and fireplaces, as well as the exhaust from a car engine, can fill the air with carbon monoxide. Carbon monoxide poisoning is a more common cause of death in fires than is the fire itself. Charcoal briquettes are particularly dangerous as they are designed to smolder rather than burst into flame and are also good sources for carbon monoxide. Using a charcoal grill in an enclosed space such as a garage or tent can lead to carbon monoxide buildup very quickly. Faulty butane and propane camp stoves and heaters can also be deadly.

Carbon monoxide’s treachery lies in its great affinity for hemoglobin, the oxygen-carrying molecule within our red blood cells (RBCs). When inhaled, CO binds to hemoglobin producing carboxyhemoglobin. It does so three hundred times more readily than does oxygen, and thus it displaces oxygen. The result is that the blood that leaves the lungs and heads toward the body is rich in carbon monoxide (carboxyhemoglobin) and poor in oxygen (oxyhemaglobin).

This strong affinity of hemoglobin for carbon monoxide means that very high blood levels can occur by breathing air that contains only small amounts of carbon monoxide. For example, breathing air that contains a carbon monoxide level as low as 0.2 percent may lead to blood carbon monoxide saturations greater than 60 percent after only thirty to forty-five minutes. So, a faulty heater or smoldering fi re that produces only a small amount of carbon monoxide becomes increasingly deadly with each passing minute.

This powerful attraction for hemoglobin explains how certain individuals succumb to carbon monoxide poisoning in open areas. Most people believe that carbon monoxide is only toxic if it is in an enclosed area, but this is not true. There have been cases of individuals dying while working on their cars in an open area, such as a driveway. Typically the victim is found lying near the car’s exhaust. Similarly, the newly recognized problem of carbon monoxide poisoning in swimmers and water skiers who loiter near a dive platform on the back of a powerboat with an idling engine.

The degree of exposure to carbon monoxide is typically measured by determining the percent of the hemoglobin that is carboxyhemoglobin. The signs and symptoms of carbon monoxide toxicity correlate with these levels. The normal level is 1 to 3 percent, but may be as high as 7 to 10 percent in smokers. At levels of 10 to 20 percent, headache and a poor ability to concentrate on complex tasks occur. Between 30 and 40 percent, headaches become severe and throbbing, and nausea, vomiting, faintness, and lethargy appear. Pulse and breathing rates increase noticeably. Between 40 and 60 percent the victim becomes confused, disoriented, and weak, and displays extremely poor coordination. Above 60 percent, coma and death are likely. These are general ranges since the actual effect of rising carbon monoxide levels varies from person to person. In the elderly and those with heart or lung disease, levels as low as 20 percent may be lethal. Victims of car exhaust suicide or those who die from fire in an enclosed room may reach 90 percent.

A running car engine in an enclosed garage is a common method for suicide, but it could also be used for homicide. If the killer subdues the victim by force or by way of intoxication, he could place the victim in his car and let the carbon monoxide actually do him in. When determining the manner of death, the ME looks for evidence of trauma to the victim as well as performs a toxicology screen. Finding trauma, such as evidence of a blow to the head, might change the manner of death from suicide to homicide, but finding drugs may not. Some people use multiple suicide methods to assure success and a drug overdose combined with carbon monoxide inhalation is not rare.

When more than one person is found dead in a house or a car and there is no evidence of trauma, carbon monoxide toxicity is considered. The odds of two or more people dying from natural causes at the same time and the same place are extremely remote.

Carboxyhemoglobin is bright red in color and imparts this hue to the blood. When the ME performs an autopsy and sees bright cherry-red blood, he suspects carbon monoxide poisoning as the cause of death. This finding is not absolutely conclusive since cyanide inhalation or ingestion can also result in bright cherry-red blood and tissues. Also, individuals dying from cold exposure or corpses exposed to very low temperatures may show bright red blood.

Lividity

Livor mortis in these situations may also be red or pink rather than the usual blue-gray color (see Chapter Five: Time of Death, “Livor Mortis”).

Lividity, CO

At autopsy, the internal organs in victims of carbon monoxide intoxication are also bright red. Interestingly, this color does not fade with embalming or when samples taken by the ME are fixed in formaldehyde as part of the preparation of microscopic slides. At times the presence of carbon monoxide can be found in the blood as long as six months after death.

Individuals who survive carbon monoxide intoxication may have serious long-term health problems. The brain is particularly vulnerable since it is extremely sensitive to lack of oxygen. Symptoms and signs of brain injury can begin immediately or be delayed for several days or weeks. The most common aftereffects include chronic headaches, memory loss, blindness, confusion, disorientation, poor coordination, and hallucinations. The ME may be asked to evaluate a living victim in this situation if the exposure was due to a criminal act or if a civil lawsuit is involved.

 

Q and A: Can My Serial Killer Make His Victims Float Face-up?

Q: My serial killer has predilections that make him want his (female) victims to float face up when they are found. He strangles them and then places them in the water, so they don’t actually die of drowning. Would plugging the throat or taping the mouth and nose shut (so air stays in the lungs) be a good way for him to achieve this effect? What else might work?

S.K. Davenport, Pittsburgh, PA

A: Plugging the throat or taping the mouth and nose would make little difference since there is not enough air in the lungs to cause a body to float. Virtually all bodies sink when first tossed into water. This is not absolutely universal as sometimes clothing can gather air and keep the victim afloat but for the most part they sink. They do not float again until the decay process has progressed to the point that gases have collected within the abdomen and the tissues and the body becomes buoyant. Most bodies float facedown for a very simple reason–the arms and the legs tend to fall in that direction rather than backwards so their weight keeps the body face down.

In order to make the body float he would have to do something to increase the rate of decay and since this is predominantly temperature dependent it would be best if the body was placed in warm water such as a heated pool, a Jacuzzi, or a swamp in Louisiana. Alternatively–and this is over-the-top sinister–he could inject air into the victims abdomen and chest and even the tissues of the legs and arms. If he injected enough the body would float immediately. In order to keep the body on its back, he would have to apply weights of some type that would weigh down the backside of the corpse. Maybe some large fishhooks placed deeply into the flesh and muscles with weights attached. Just a diabolical thought.

 
12 Comments

Posted by on January 4, 2013 in Asphyxia, Crime Scene, Q&A, Time of Death

 

Q and A: Can a Murder Be Staged to Look Like an Accidental Death from Autoerotic Asphyxia?

Q: I am currently working on a book that centers on a murder staged to look like an accidental death by autoerotic strangulation. Obviously the victim (who is a large man) needs to be incapacitated to the point where he is either unconscious or offers no resistance. The killer is unknown to the victim and not in a position to tamper with his food or drink, but by masquerading as a janitor he is able to get physically close. He is also able to obtain just about anything he’d need to get the job done.

Would Rohypnol do the trick? Can it be injected? Is there anything else you can think of that would serve?

A: Autoerotic asphyxia is the use of partial strangulation as part of masturbatory fantasies. Erotic asphyxia is where one partner partially strangles the other during sexual activity. The “kick” seems to be that the anoxia (decrease in blood, and thus oxygen supply, to the brain) is supposed to enhance the experience. This is also very dangerous and can lead to death or permanent brain injury. Most people believe that strangulation leads to loss of consciousness and death by preventing the victim from breathing. Not so. Strangulation compresses and obstructs the carotid arteries. These are the arteries on either side of the neck that carry blood from the heart to the brain. This is why strangulation can lead to loss of consciousness in a few seconds and death in less than a minute while you can hold your breath for 2 or 3 minutes if necessary. In the later, the oxygen content of the blood gradually declines while with occlusion of the carotid arteries the blood supply to the brain is abruptly interrupted. This makes erotic asphyxia, auto or otherwise, a very dangerous game. The victim often underestimates his capacity to stay conscious and once consciousness is lost, he can no longer save himself by releasing the rope, etc. Or his partner miscalculates when to release the pressure. Death follows.

Since you want the death to look like an accidental strangulation and since the ME can most often determine if strangulation has occurred, you would want the “actual cause of death” to be strangulation. If the killer were strong enough he could simply loop a rope around the victim’s neck, strangle him to death, and then “stage” the autoerotic scene. This is clean and simple and requires no other equipment and no chemicals. From your question, I get the impression that this would not work for you.

So, your killer must incapacitate the victim, strangle him, and then set the scene. Yes, Rohypnol would work as would GHB and Ecstasy. These are all given orally but have no flavor or odor and could easily be placed into water or any other liquid. Again, you don’t want this for your scenario so that brings us to an injectable sedative. I’m assuming that you have worked out a method for your killer to sneak up on the victim and quickly inject him with the drug (not that easy to do) and if so drugs such as Ativan, Versed, or Ketamine would fit your needs. Ketamine is currently a hot item on the Rave and drug abuse scene and is often stolen from vet clinics–often at gunpoint–since it is a useful animal anesthetic. It is an injectable liquid, but kids dry the liquid by heating it, leaving behind a white powder, which they then snort. Go figure.

All the above mentioned injectable drugs are rapid acting sedatives and if given in large enough doses could take the victim down in a very few minutes. He would become disoriented and confused, then unconscious. Your killer could then do his dirty work. One problem could arise however. These drugs are powerful sedatives and anesthetics and your victim could stop breathing. Here the cause of death would not be strangulation, which is a problem for your killer. There is a way around this however. If the victim stopped breathing, your killer would need to strangle him immediately. Why? If he dies of chemical asphyxia (stops breathing due to chemical sedation) there would not be the characteristic neck bruises that the coroner would look for to conclude the death was due to strangulation. Once the heart stops, the blood clots in the blood vessels very quickly and bruising is no longer possible. This means that strangling the victim after death would not leave bruises. If the victim stopped breathing, he would be alive for several minutes so if your killer then strangled him quickly, the characteristic bruising would be present and the ME might conclude that the victim died from an accidental autoerotic strangulation.

One important point is that the killer should use the same rope to strangle as he uses to “stage” the autoerotic death. Manual strangulation with his hands or with a rope of a different size and pattern might leave behind bruise patterns that were different than expected and these findings might tip off the ME that something was amiss.

Of course, the coroner could test for Ketamine or any other drug and would find it if he looked for it. He might not but even if he does a sophisticated toxicological evaluation might take days or weeks to perform. This could give your killer the time he needs to disappear, if that’s his plan. Also, the ME could locate the injection site on the corpse and maybe even test the tissues in the area and find a high concentration of whichever drug was injected. For these reasons, I would suggest that you find a way to use one of the oral drugs. People often use Ecstasy and GHB and other sedatives as part of their sexual activities so the finding of these drugs in the victim could be considered part of his thing. The injectable drugs would not fit this scenario and would raise an eyebrow or two. And as I said, it isn’t easy to stab someone with a needle, and hold it in place long enough to depress the plunger on the syringe and inject the medication. Possible, just difficult.

 
6 Comments

Posted by on September 18, 2011 in Asphyxia, Medical Issues, Q&A

 

Question and Answer: What Happens When Someone Is Hanged?

Q: I’ve got a couple of questions about hanging. I have a 140-pound man of slight build who has been hanged. His neck is not broken and thus he is strangling. His hands are bound. How long might he survive before death? Would he lose consciousness well before or shortly before death? If he is taken down before death, we would certainly see abrasion of the neck. What else would we see? If unconscious, would he revive quickly? Could his injuries be life-threatening? (I’m thinking of throat swelling here) I am looking at pre-modern society here. No ER or modern medicine.

A: In hangings, death results from asphyxia, which is the reduction of oxygen to the brain. Asphyxia in hangings results from the compression of the airways and the carotid arteries (the arteries on either side of the neck that carry blood to the brain) by a noose or other ligature that is pulled tight by the body weight. Thus, the victim must be completely or partially suspended.

 


Though the airway can be compressed and breathing can be interrupted, the real cause of loss of consciousness and death in most hangings is compression of the carotid arteries, which blocks blood flow to the brain. Except for judicial (legally directed) hangings, fractures of the cervical vertebrae (spinal bones of the neck) are uncommon. The reason is that these fractures require that the body drop a sufficient distance to break them. How far is this? The answer depends upon several factors. Individuals who are obese, have small neck musculature, or who have arthritis of the cervical spine may suffer neck fractures quite easily. Just the opposite is true for muscular, thick-necked persons. In judicial hangings, these factors are considered in gauging the distance of the drop. Too little drop and the condemned person is strangled to death, too far and he could be decapitated.

The neck markings seen after hanging depends mainly on the nature of the noose used. Soft nooses such as sheets may leave little of no markings. Bruises and abrasions are not common with softer devices. In fact, if the victim uses a soft noose and if the body is discovered fairly quickly and cut down, the ME may not be able to find any marks at all. A rope or cord may leave a very deep, distinct furrow in the victim’s neck. The longer the body hangs, the deeper the furrow. Abrasions and contusions are more common with these types of nooses. Occasionally the furrow and any associated bruising may reveal the braid pattern of a rope or the link configuration of a chain.

In hangings, the furrow and the bruising will follow a typical course. The pattern is that of an inverted V. The furrow tends to be diagonal across the neck with its high end where the knot is located. The knot is usually to one side. This means that if the knot is to the victim’s left side, the furrow will be lower on the neck and much deeper on the right side and will angle upward toward the left ear. Near the knot, the furrow may shallow and disappear. This pattern is due to the body hanging by the “bottom” of the nose.

Okay, enough about hangings, let’s get to your situation. Since the asphyxia is due to compression of the arteries and not the prevention of breathing, loss of consciousness occurs very quickly, usually in a minute or less and maybe as short as 20 seconds. The brain needs a continuous supply of blood and when this is interrupted, consciousness is lost quickly. Death may take from 1 to 5 or 6 minutes.

If your victim is found within 2 to 3 minutes, he would be unconscious but could wake up fairly quickly—a couple of minutes. Or not. Some people die in a minute while others can take many minutes. Go with a couple of minutes but not longer and you’ll be OK. He would probably have the typical V-shaped bruises on his neck and a furrow that would resolve over a half hour or so.

He could return completely to normal or be left with brain damage or even remain in a coma for hours, days, weeks, months, years, or forever. It all depends upon how long the brain was deprived of blood and luck. This varies from person to person.

 
 
Follow

Get every new post delivered to your Inbox.

Join 2,429 other followers